Por que a aeronave tem velocidade de crossover e por que ela aumenta com fatores de carga vertical mais altos?

8

De acordo com o relatório de acidentes do NTSB sobre o travamento de USAir Flight 427 , todas as aeronaves comerciais têm uma velocidade de cruzamento (a velocidade na qual a força máxima de rolagem dos ailerons e spoilers da aeronave é apenas suficiente para contrabalançar a força de rolamento gerada por um hardover de leme completo; acima dessa velocidade, um hardover de leme pode ser desgastado com uma entrada de jugo suficiente, enquanto abaixo dessa velocidade, um hardover de leme causará uma perda imediata de controle). passo com o fator de carga vertical da aeronave (de modo que a velocidade relativa do cruzamento a, digamos, 4 Gs seja maior do que a 1 G) 1 :

Several flight test conditions required the test pilots to maintain control of the airplane and, if possible, a constant (or steady) heading by using the control wheel to oppose full rudder surface deflections. These tests revealed that, in the flaps 1 configuration and at certain airspeeds, the roll authority (using spoilers and ailerons) was not sufficient to completely counter the roll effects of a rudder deflected to its blowdown limit. The airspeed at which the maximum roll control (full roll authority provided by control wheel input) could no longer counter the yaw/roll effects of a rudder deflected to its blowdown limit was referred to by the test group participants as the “crossover airspeed.”

The flight tests revealed that, in the flaps 1 configuration and at an estimated aircraft weight of 110,000 pounds, the 737-300 crossover airspeed was 187 KCAS at one G. At airspeeds above 187 KCAS, the roll induced by a full rudder deflection could be corrected by control wheel input; however, in the same configuration at airspeeds of 187 KCAS and below, the roll induced by a full rudder deflection could not be completely eliminated by full control wheel input in the opposite direction, and the airplane continued to roll into the direction of the rudder deflection. The flight test data also confirmed that an increase in vertical load factor, or angle-of-attack, resulted in an increase in the crossover airspeed.

... The M-CAB flight simulations indicated that, with a rudder deflected to its aerodynamic blowdown limit and in the configuration and conditions of the USAir flight 427 accident airplane, the roll could not be completely eliminated (and control of the airplane could not be regained) by using full control wheel inputs if the airspeed remained below 187 KCAS... To return the airplane to a wings-level attitude, the pilots had to avoid excessive maneuvering that would increase the vertical load factor, or angle-of-attack, and thus increase the crossover airspeed.

... One pilot described how the airplane would initially respond to aileron inputs and begin to roll out of the rudder-induced bank attitude and how, by pulling back on the control column and adding some vertical load factor, the recovery could be stopped and the airplane could hang in a sideslip bank. The test pilot said that he did not apply additional aft column inputs at these moments but that these inputs would have caused the airplane to “roll into the rudder.” The pilot concluded that “you can control roll rate with the control column.” The other Boeing test pilot said that, in referring to the control inputs required to perform a recovery from full rudder input, “there is some technique required between the G [normal load factor] and the roll.”

The flight test pilots affirmed that the Boeing M-CAB and computer simulation models incorporated the tradeoff between normal load factor and roll control but that the tradeoff occurred at a greater load factor in the simulator than in the airplane...

Boeing’s flight test pilots stated that, when they allowed the airspeed to increase to about 220 to 225 KCAS (sacrificing altitude as necessary to maintain airspeed), the airplane recovered easily. The pilots reported that, when they initiated the event at higher airspeeds, the airplane was easier to control and that recovery was accomplished with less roll... [pages 63-65 of the report/pages 87-89 of the report’s PDF file]

Boeing’s article defined crossover airspeed as the speed below which the rolling moment created by a full lateral control input will not overcome the roll effect from full rudder displacement. The article stated that “while the airspeed at which this occurs is variable, cross-over speeds exist on all commercial airplanes... ” [page 205/229]

... On the basis of the existing airspeed and the increase in vertical G load, by about 1903:02 the airplane would have been below the airspeed at which the roll controls (aileron and spoilers) could counter the effects of the fully deflected rudder (crossover airspeed). Thus, from that time onward, it would have been impossible for the flight crew to regain roll control without increasing airspeed and/or decreasing the airplane’s vertical G load. [page 256/280]

Dado que os ailerons e spoilers de um avião geralmente viajam na mesma velocidade que o leme (e, portanto, experimentam aumentos correspondentes na autoridade de controle com o aumento da velocidade), como sua autoridade de controle lateral ultrapassa a do leme Rapidez? Mesmo que as forças aerodinâmicas geradas pelos ailerons e spoilers - e, portanto, a autoridade de controle da mesma - aumentem à medida que a velocidade aerodinâmica aumenta, este mesmo efeito não deveria causar o aumento da autoridade de controle do leme e permanecer à frente do aileron / autoridade de controle de spoiler? Por que a autoridade de controle dos controles laterais aumenta com a velocidade no ar mais rapidamente do que a autoridade de controle do leme? Aliás, existe alguma razão em particular para que a autoridade de controle do leme tenha que ser maior que a dos ailerons e spoilers em baixas velocidades? O leme precisa ter muita autoridade de controle para poder compensar uma falha de motor logo acima da V-1 - mas por que os controles laterais não têm ainda mais autoridade de controle, a fim de compensar um leme hardover a baixas velocidades?

E por que um aumento no fator de carga vertical faz com que a velocidade do ar de cruzamento aumente? Para um avião experimentar um alto fator de carga vertical, ele deve estar voando em um ângulo anormalmente grande de ataque - isso não deveria colocar o leme mais longe e mais longe na esteira da cauda horizontal e fuselagem traseira, “apagando” a leme (reduzindo a sua autoridade de controle) e, assim, causando uma diminuição na velocidade do ar de cruzamento?

..........

1 : Para o 737, a velocidade relativa de cruzamento também depende da configuração do flap da aeronave, mas essa é outra questão .

    
por Sean 21.01.2019 / 05:29

2 respostas

how can [an airplane’s ailerons and spoilers] lateral control authority surpass that of the rudder past a certain speed?

Isso depende do coeficiente de sustentação da asa. Em um coeficiente de sustentação mais alto, o aileron inferior não pode adicionar a mesma quantidade de sustentação que poderia a um coeficiente de elevação menor. Enquanto o aileron levantado no lado oposto ainda reduzirá o levantamento localmente, o aileron abaixado torna-se menos efetivo em elevar o elevador conforme o aumento do coeficiente de sustentação. Um coeficiente de sustentação mais alto causa um pico de sucção mais alto perto da borda principal e coloca mais tensão na camada limite, e a adição de mais do mesmo se tornará mais difícil à medida que a asa se aproxima das condições de estol.

Outro fator é o desvio negativo que aumenta com o coeficiente de sustentação. Este guincho adverso aumentará o momento de guinada do leme de impacto e aumentará o deslize lateral, o que por sua vez produzirá mais um momento de rolagem a partir do diedro contra o efeito do aileron. Como o guincho adverso diminui com o menor coeficiente de sustentação, o ângulo de inclinação lateral e os ailerons ganham força de controle.

Observe que a aeroelasticidade diminuirá a eficácia de todas as superfícies de controle à medida que a velocidade aumenta. Os detalhes dependem da rigidez torcional da fuselagem (que será torcida pelo leme desviado) e da asa (que se debruçará contra a deflexão do aileron). Dependendo de onde a rigidez é maior, a velocidade de cruzamento e a eventual autoridade de rolagem em velocidades acima dela podem variar.

why does an increase in vertical load factor cause the crossover airspeed to increase?

Como um fator de carga mais alto precisa de um maior coeficiente de sustentação ao voar na mesma velocidade.

    
21.01.2019 / 20:20

Esta parece ser uma questão de anulação de ailerons vs leme. AoA mais alto apagará o aileron elevado. É o que acontece com velocidades mais baixas e maior "carga vertical" G com elevador. Possivelmente contribuindo seria que o elevador também estivesse desviando o fluxo de ar diagonalmente através do leme, aumentando seu comprimento efetivo.

Embora o leme esteja em branco em maior AOA, o efeito pode ser maior nos ailerons.

Isso pode ser testado em um túnel de vento para possível consideração de re-design. Ailerons maiores ou taxas duplas para velocidades mais lentas podem fornecer uma solução, bem como avaliação do leme (s).

Post Script: essencialmente, a aeronave entrou em um elevador transversal controlado. Possivelmente novas tecnologias (como a modificação de um conjunto de spoilers de asa em clamshells) para fazer backup da função do leme ajudariam.

    
21.01.2019 / 18:55