Parece que seu gráfico de sustentação induzida não está diminuindo porque você supõe que a sustentação aumenta com a velocidade. Isso geralmente não é o caso.
Normalmente, um gráfico de velocidade de arrasto versus velocidade é feito para um vôo nivelado não acelerado. Sob estas condições, o elevador é igual ao peso da aeronave.
$ L = W = \ frac {1} {2} \ rho V ^ 2 c_L S $
A partir disso, podemos obter o coeficiente de sustentação como uma função da velocidade:
$ c_L = \ frac {W} {\ frac {1} {2} \ rho V ^ 2 S} $
O arrasto da aeronave é a soma do arrasto parasita e da resistência induzida:
$ D = D_p + D_i $
Com o parasita arrastar:
$ D_p = c_ {D, 0} \ frac {1} {2} \ rho V ^ 2 S $
E o arrasto induzido:
$ D_i = \ frac {1} {2} \ rho V ^ 2 S \ frac {c_L ^ 2} {\ pi AR \ epsilon} = \ frac {W ^ 2} {\ frac {1} {2} \ rho V ^ 2 S \ pi AR \ epsilon} = \ frac {W ^ 2} {\ frac {1} {2} \ rho V ^ 2 \ pi b ^ 2 \ epsilon} $
É importante entender que isso só é válido quando o levantamento é igual ao peso da aeronave (por exemplo, vôo em linha reta e nível)
Nomenclatura:
$ L \: \: \: \: \: $ lift
$ W \: \: \: $ peso da aeronave
$ \ rho \: \: \: \: \: $ densidade do ar
$ V: \: \: \: $ velocity
$ S \: \: \: \: $ wing area area
$ c_L: \: \: $ coeficiente de aumento
$ c_ {D0} \: coeficiente de arrasto zero-lift =
$ \ pi \: \: \: \: \: $ 3.14159 $ \ dots $
$ AR \: \: $ relação de aspecto da asa
$ \ epsilon \: \: \: \: \: \: $ o fator Oswald da ala
$ b \: \: \: \: \: \: $ wing span